Copied to
clipboard

G = C22⋊C4×C20order 320 = 26·5

Direct product of C20 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C22⋊C4×C20, C22⋊(C4×C20), C2.1(D4×C20), (C2×C42)⋊1C10, (C22×C4)⋊6C20, (C2×C10)⋊5C42, (C22×C20)⋊23C4, (C2×C20).533D4, C10.133(C4×D4), (C23×C4).2C10, (C23×C20).5C2, C10.51(C2×C42), C23.14(C2×C20), C24.22(C2×C10), C22.27(D4×C10), C2.C4213C10, C22.14(C22×C20), C23.50(C22×C10), (C23×C10).82C22, C10.70(C42⋊C2), (C22×C20).488C22, (C22×C10).441C23, (C2×C4×C20)⋊2C2, C2.3(C2×C4×C20), (C2×C4)⋊6(C2×C20), (C2×C20)⋊41(C2×C4), (C2×C4).143(C5×D4), C2.2(C10×C22⋊C4), (C2×C10).594(C2×D4), C2.2(C5×C42⋊C2), C22.13(C5×C4○D4), (C2×C22⋊C4).14C10, (C10×C22⋊C4).34C2, C10.131(C2×C22⋊C4), (C22×C4).82(C2×C10), (C2×C10).203(C4○D4), (C22×C10).177(C2×C4), (C5×C2.C42)⋊29C2, (C2×C10).314(C22×C4), SmallGroup(320,878)

Series: Derived Chief Lower central Upper central

C1C2 — C22⋊C4×C20
C1C2C22C23C22×C10C22×C20C5×C2.C42 — C22⋊C4×C20
C1C2 — C22⋊C4×C20
C1C22×C20 — C22⋊C4×C20

Generators and relations for C22⋊C4×C20
 G = < a,b,c,d | a20=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 370 in 258 conjugacy classes, 146 normal (22 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C10, C42, C22⋊C4, C22×C4, C22×C4, C22×C4, C24, C20, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C42, C2×C22⋊C4, C23×C4, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C4×C22⋊C4, C4×C20, C5×C22⋊C4, C22×C20, C22×C20, C22×C20, C23×C10, C5×C2.C42, C2×C4×C20, C10×C22⋊C4, C23×C20, C22⋊C4×C20
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C23, C10, C42, C22⋊C4, C22×C4, C2×D4, C4○D4, C20, C2×C10, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C2×C20, C5×D4, C22×C10, C4×C22⋊C4, C4×C20, C5×C22⋊C4, C22×C20, D4×C10, C5×C4○D4, C2×C4×C20, C10×C22⋊C4, C5×C42⋊C2, D4×C20, C22⋊C4×C20

Smallest permutation representation of C22⋊C4×C20
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(21 100)(22 81)(23 82)(24 83)(25 84)(26 85)(27 86)(28 87)(29 88)(30 89)(31 90)(32 91)(33 92)(34 93)(35 94)(36 95)(37 96)(38 97)(39 98)(40 99)(41 123)(42 124)(43 125)(44 126)(45 127)(46 128)(47 129)(48 130)(49 131)(50 132)(51 133)(52 134)(53 135)(54 136)(55 137)(56 138)(57 139)(58 140)(59 121)(60 122)
(1 111)(2 112)(3 113)(4 114)(5 115)(6 116)(7 117)(8 118)(9 119)(10 120)(11 101)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 109)(20 110)(21 100)(22 81)(23 82)(24 83)(25 84)(26 85)(27 86)(28 87)(29 88)(30 89)(31 90)(32 91)(33 92)(34 93)(35 94)(36 95)(37 96)(38 97)(39 98)(40 99)(41 123)(42 124)(43 125)(44 126)(45 127)(46 128)(47 129)(48 130)(49 131)(50 132)(51 133)(52 134)(53 135)(54 136)(55 137)(56 138)(57 139)(58 140)(59 121)(60 122)(61 148)(62 149)(63 150)(64 151)(65 152)(66 153)(67 154)(68 155)(69 156)(70 157)(71 158)(72 159)(73 160)(74 141)(75 142)(76 143)(77 144)(78 145)(79 146)(80 147)
(1 41 160 95)(2 42 141 96)(3 43 142 97)(4 44 143 98)(5 45 144 99)(6 46 145 100)(7 47 146 81)(8 48 147 82)(9 49 148 83)(10 50 149 84)(11 51 150 85)(12 52 151 86)(13 53 152 87)(14 54 153 88)(15 55 154 89)(16 56 155 90)(17 57 156 91)(18 58 157 92)(19 59 158 93)(20 60 159 94)(21 116 128 78)(22 117 129 79)(23 118 130 80)(24 119 131 61)(25 120 132 62)(26 101 133 63)(27 102 134 64)(28 103 135 65)(29 104 136 66)(30 105 137 67)(31 106 138 68)(32 107 139 69)(33 108 140 70)(34 109 121 71)(35 110 122 72)(36 111 123 73)(37 112 124 74)(38 113 125 75)(39 114 126 76)(40 115 127 77)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (21,100)(22,81)(23,82)(24,83)(25,84)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(37,96)(38,97)(39,98)(40,99)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(49,131)(50,132)(51,133)(52,134)(53,135)(54,136)(55,137)(56,138)(57,139)(58,140)(59,121)(60,122), (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,100)(22,81)(23,82)(24,83)(25,84)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(37,96)(38,97)(39,98)(40,99)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(49,131)(50,132)(51,133)(52,134)(53,135)(54,136)(55,137)(56,138)(57,139)(58,140)(59,121)(60,122)(61,148)(62,149)(63,150)(64,151)(65,152)(66,153)(67,154)(68,155)(69,156)(70,157)(71,158)(72,159)(73,160)(74,141)(75,142)(76,143)(77,144)(78,145)(79,146)(80,147), (1,41,160,95)(2,42,141,96)(3,43,142,97)(4,44,143,98)(5,45,144,99)(6,46,145,100)(7,47,146,81)(8,48,147,82)(9,49,148,83)(10,50,149,84)(11,51,150,85)(12,52,151,86)(13,53,152,87)(14,54,153,88)(15,55,154,89)(16,56,155,90)(17,57,156,91)(18,58,157,92)(19,59,158,93)(20,60,159,94)(21,116,128,78)(22,117,129,79)(23,118,130,80)(24,119,131,61)(25,120,132,62)(26,101,133,63)(27,102,134,64)(28,103,135,65)(29,104,136,66)(30,105,137,67)(31,106,138,68)(32,107,139,69)(33,108,140,70)(34,109,121,71)(35,110,122,72)(36,111,123,73)(37,112,124,74)(38,113,125,75)(39,114,126,76)(40,115,127,77)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (21,100)(22,81)(23,82)(24,83)(25,84)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(37,96)(38,97)(39,98)(40,99)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(49,131)(50,132)(51,133)(52,134)(53,135)(54,136)(55,137)(56,138)(57,139)(58,140)(59,121)(60,122), (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,100)(22,81)(23,82)(24,83)(25,84)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(37,96)(38,97)(39,98)(40,99)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(49,131)(50,132)(51,133)(52,134)(53,135)(54,136)(55,137)(56,138)(57,139)(58,140)(59,121)(60,122)(61,148)(62,149)(63,150)(64,151)(65,152)(66,153)(67,154)(68,155)(69,156)(70,157)(71,158)(72,159)(73,160)(74,141)(75,142)(76,143)(77,144)(78,145)(79,146)(80,147), (1,41,160,95)(2,42,141,96)(3,43,142,97)(4,44,143,98)(5,45,144,99)(6,46,145,100)(7,47,146,81)(8,48,147,82)(9,49,148,83)(10,50,149,84)(11,51,150,85)(12,52,151,86)(13,53,152,87)(14,54,153,88)(15,55,154,89)(16,56,155,90)(17,57,156,91)(18,58,157,92)(19,59,158,93)(20,60,159,94)(21,116,128,78)(22,117,129,79)(23,118,130,80)(24,119,131,61)(25,120,132,62)(26,101,133,63)(27,102,134,64)(28,103,135,65)(29,104,136,66)(30,105,137,67)(31,106,138,68)(32,107,139,69)(33,108,140,70)(34,109,121,71)(35,110,122,72)(36,111,123,73)(37,112,124,74)(38,113,125,75)(39,114,126,76)(40,115,127,77) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(21,100),(22,81),(23,82),(24,83),(25,84),(26,85),(27,86),(28,87),(29,88),(30,89),(31,90),(32,91),(33,92),(34,93),(35,94),(36,95),(37,96),(38,97),(39,98),(40,99),(41,123),(42,124),(43,125),(44,126),(45,127),(46,128),(47,129),(48,130),(49,131),(50,132),(51,133),(52,134),(53,135),(54,136),(55,137),(56,138),(57,139),(58,140),(59,121),(60,122)], [(1,111),(2,112),(3,113),(4,114),(5,115),(6,116),(7,117),(8,118),(9,119),(10,120),(11,101),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,109),(20,110),(21,100),(22,81),(23,82),(24,83),(25,84),(26,85),(27,86),(28,87),(29,88),(30,89),(31,90),(32,91),(33,92),(34,93),(35,94),(36,95),(37,96),(38,97),(39,98),(40,99),(41,123),(42,124),(43,125),(44,126),(45,127),(46,128),(47,129),(48,130),(49,131),(50,132),(51,133),(52,134),(53,135),(54,136),(55,137),(56,138),(57,139),(58,140),(59,121),(60,122),(61,148),(62,149),(63,150),(64,151),(65,152),(66,153),(67,154),(68,155),(69,156),(70,157),(71,158),(72,159),(73,160),(74,141),(75,142),(76,143),(77,144),(78,145),(79,146),(80,147)], [(1,41,160,95),(2,42,141,96),(3,43,142,97),(4,44,143,98),(5,45,144,99),(6,46,145,100),(7,47,146,81),(8,48,147,82),(9,49,148,83),(10,50,149,84),(11,51,150,85),(12,52,151,86),(13,53,152,87),(14,54,153,88),(15,55,154,89),(16,56,155,90),(17,57,156,91),(18,58,157,92),(19,59,158,93),(20,60,159,94),(21,116,128,78),(22,117,129,79),(23,118,130,80),(24,119,131,61),(25,120,132,62),(26,101,133,63),(27,102,134,64),(28,103,135,65),(29,104,136,66),(30,105,137,67),(31,106,138,68),(32,107,139,69),(33,108,140,70),(34,109,121,71),(35,110,122,72),(36,111,123,73),(37,112,124,74),(38,113,125,75),(39,114,126,76),(40,115,127,77)]])

200 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4AB5A5B5C5D10A···10AB10AC···10AR20A···20AF20AG···20DH
order12···222224···44···4555510···1010···1020···2020···20
size11···122221···12···211111···12···21···12···2

200 irreducible representations

dim111111111111112222
type++++++
imageC1C2C2C2C2C4C4C5C10C10C10C10C20C20D4C4○D4C5×D4C5×C4○D4
kernelC22⋊C4×C20C5×C2.C42C2×C4×C20C10×C22⋊C4C23×C20C5×C22⋊C4C22×C20C4×C22⋊C4C2.C42C2×C42C2×C22⋊C4C23×C4C22⋊C4C22×C4C2×C20C2×C10C2×C4C22
# reps12221168488846432441616

Matrix representation of C22⋊C4×C20 in GL4(𝔽41) generated by

32000
0100
0050
0005
,
40000
04000
0010
00040
,
1000
0100
00400
00040
,
9000
03200
0009
0090
G:=sub<GL(4,GF(41))| [32,0,0,0,0,1,0,0,0,0,5,0,0,0,0,5],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[9,0,0,0,0,32,0,0,0,0,0,9,0,0,9,0] >;

C22⋊C4×C20 in GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times C_{20}
% in TeX

G:=Group("C2^2:C4xC20");
// GroupNames label

G:=SmallGroup(320,878);
// by ID

G=gap.SmallGroup(320,878);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,560,589,1128,436]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
×
𝔽